
On the determination of weights for the high temperature star cluster expansion of the free

energy of the Ising model in zero magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 1589

(http://iopscience.iop.org/0301-0015/7/13/013)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/13
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math., Nucl. Gen., Vol. 7, No. 13, 1974. Printed in Great Britain. Q 1974 
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Abstract. Some results relevant to the derivation of the high temperature series expansion 
for the zero-field free energy of the Ising model are collected from the literature. The 
general theory of the star cluster expansion is summarized and some methods for the 
derivation of the appropriate weights are given in outline. 

1. Introduction 

High temperature series expansions for the free energy of the Ising model in the absence 
of a magnetic field have been investigated by many authors (Rushbrooke and Eve 
1962, Baker 1963, Hunter 1967, 1969; for a comprehensive review of early work see 
Domb 1960). Since the early studies of Domb (1949), Trefftz (1950), Wakefield (1951) 
and Potts (1951) there have been many improvements in techniques for the derivation 
of such expansions. In this article we collect together some useful results many of which 
find their origin deep in the literature. In $ 2  we give a generalized configurational 
formulation which relates the free energy to a key configurational function; the direct 
configurational method was used by most early investigators. In $ 3  we describe the 
formal cluster expansion for the free energy and demonstrate that it is a star cluster 
expansion. In $ 4 we describe in outline some methods available for the determination 
of the weights and state and prove a powerful result due to Domb that enables the 
weights to be generated explicitly. In $ 5 we prove a general substitution theorem for 
deriving the key configurational function of stars with at least one articulation set of 
order 2 from simpler stars. The configurational problem presented by the star cluster 
expansion is described in a companion paper (Sykes et a1 1974). We use the basic 
definitions in graph theory of Sykes et al(1966, 1974) and Essam and Fisher (1970). 

For any graph G we take the associated simple Ising model to be a set of spins 
located on the N vertices of G, one spin on each and every vertex, which interact in 
pairs delineated by the Jf edges of G. We denote by J the energy of interaction between 
pairs of spins and write U = tanh K with K = J / k T .  We also associate with G the 
generalized Ising model in which the interactions between pairs of spins are all distinct. 
If the edges of the graph are labelled 1,2, .  . . , i, . . . we denote the energy corresponding 
to the ith edge by Ji and write vi = tanh K i  with K i  = J J k T .  

When G represents a small finite cluster of spins the partition function may be 
obtained explicitly by enumerating all the possible states. Since we are primarily 
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concerned with identifying G with an infinite crystal lattice we have recourse to series 
developments. 

2. Generalized configurational formulation and abridged notation 

The starting point of the direct configurational method is the well known result that if 
[A(G)lN is the partition function of the Ising model associated with G we may write, 
in the absence of an applied magnetic field, 

(2.1) N In A = N In 2 + Jlr ln(cosh K ) +  L(u, G) 

where p ( r )  denotes the number of independent choices of r edges of G such that the 
linear graph formed is one all of whose vertices are of even degree (no-field graph). In 
other words the quantity p(r) is the total number of possible weak embeddings in G of 
all no-field graphs of r edges. This elegant result is apparently due to Van der Waerden 
(1941); a detailed modern treatment is given by Domb (1960, 6 3.4.1). The key con- 
jigurational function P(u) is readily found by inspection for simple graphs. 

As examples we illustrate two graphs and their corresponding key configurational 
functions : 

In the second the coefficient of v6 corresponds to one embedding of a six-sided polygon 
and one embedding of a pair of (separated) triangles ; there are no other no-field graphs 
with six edges embeddable in the graph. 

The configurational formulation (2.1-2) is easily extended to the generalized Ising 
model associated with G .  The key function P(u) is replaced by a polynomial in the 
variables v i ;  it is the sum of all products, of any number of factors, for which the cor- 
responding edges form a no-field graph. It follows from this restriction that if a set of 
edges a, b, c correspond to a bridge of G, then the variables ua,  u b ,  u c ,  . . . will always 
occur together. It is less cumbersome to label the bridges by letters r,  s, t ,  . . . and write 
r for the product of variables corresponding to the bridge r and so on. We describe 
this as an abridged notation. A detailed treatment, with many examples, is given by 
Domb (1970,g 3). It is evident that the abridged form of the function P is immediately 
applicable to any homeomorph of G. 

As examples we illustrate the key configurational functions for two theta graphs 
with labelled edges : 

P = 1 + v I v 2 u 3  + u304t'St'6 f t ' I L ' 2uq t 'S t ' g  (2.5) 
6 
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and these results can be summarized by labelling the bridges of the theta graph 
topology r ,  s, t and writing in abridged notation : 

r ( D r  P = 1 + rs + rt + st. (2.7) 

3. The star cluster expansion 

As an alternative to the direct configurational method the function L(v, G) may be 
written as a cluster expansion 

where g is any graph, (g; G) denotes the number of weak embeddings of g in G (weak 
lattice constant) and the w are functions oft’ called the weak weight functions; they are 
independent of G. Our notation follows Sykes et a/ (1966,s 3, where a detailed theoretical 
treatment is given. The whole subject of cluster expansions has been treated ex- 
haustively in the literature (Kubo 1962, Strieb et al 1963, Abe 1964). In the absence of 
an applied magnetic field the summation in (3.1) may be restricted to multiply con- 
nected graphs. In the present context we follow the usual practice of calling these star 
graphs; this latter term as usually defined includes the bond but no confusion should 
arise; the weight of the bond is to be taken as zero. The fact that (3.1) is a star cluster 
expansion is implicit in the Mayer development (Uhlenbeck and Ford (1962); other 
relevant papers are those of Yvon (1945), Rushbrooke and Scoins (1955, 1962), Domb 
and Hiley (1962) and particularly Domb (1960, $5.2.10) and references there cited). 

A direct demonstration of the star-graph restriction can be given. Any articulated 
graph G, formed from two graphs G, and G, with a point in common (the articulation 
point) has a key configurational function P that may be written as a product 

P = P1P2 (3.2) 

of the key functions of G, and G, (Hunter 1967). For suppose g is any no-field sub- 
graph of G. Then if g is neither wholly in G, nor wholly in G, it must be the sum graph 
of two no-field sub-graphs, g, wholly in G , ,  and g, wholly in G2 ; for if either was not 
no-field this could only be because the vertex at the articulation point was odd, and 
odd vertices must occur in pairs. The product (3.2) therefore enumerates all the possible 
embeddings that contribute to P. From (3.2) and (2.2) it follows that 

L(G) = L(G,)+L(G,). (3.3) 

But (3.3) is the necessary and sufficient condition for the cluster expansion of L to be a 
star cluster expansion. A proof of this quite general result is given by Essam and Sykes 
(1966, equation (3.13) et seq). 
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Explicitly if the number of weak embeddings per site of the graphs A, 0, 0, , 0 are denoted by p 3 ,  p4, p s ,  p 5 . ,  p 6  respectively, then for any graph the 
expansion starts : 

(3.4) 
1 
N -L(U, G) = p 3 U 3 + p 4 U 4 + p g U 5 + ( p , - P s a - ~ p 3 ) U 6 +  . . 

The coefficient of p 3  on the right-hand side corresponds to the weak weight function 
for the triangle. Its expansion starts : 

w(u,p3) = u 3 - - ) u  “ . . .  (3.5) 
I For the graph given as an example in (2.4) p 3  = f ,  p4 = &, p 5  = 5 ,  p 5 .  = 0, p6  = $ and 

it may be verified by exponentiation that (3.4) is in agreement with (2.4). 

4. Determination of the weak weight functions for the star cluster expansion 

A series development can now be obtained by grouping the formal summation (3.1) in 
powers of t‘ : 

(4.1) 

The coefficients are determined by the successive weights wr(g) which are the coefficients 
in the expansions of the weak weight functions : 

We call the numbers wr(g) the L-weights, or simply the weights, of g .  The weight 
functions are defined by (3.1) and by successive application of this equation in turn to 
each graph in a suitably ordered graph dictionary they may be calculated explicitly and 
the L-weights derived. The necessary manipulations may be performed directly or 
recursively (Sykes et a1 1966, equations (5.22) and (5.23)). The method consists essentially 
in subtracting off the contributions of all the sub-graphs of g (method of sub-graph 
subtraction). A variety of procedures can be used; it is not necessary to restrict the 
sub-graphs considered to stars since the total effect of other sub-graphs is zero. Thus, 
for example, if G is a star and we denote the function L for the graph formed by deleting 
s bridges from G by L, then, by a straightforward application of the principle of in- 
clusion and exclusion (Riordan 1958 chap 3, Ryser 1963, chap 2), 

w(G) = L(G)- C L , ( G ) +  CL,(G)-  . . .  +(-1)”CL,(G)+ . . .  (4.3) 

the summations being taken over all distinct choices of bridges. 
In practice it is usually more convenient to avoid sub-graph subtraction altogether 

and exploit a powerful technique introduced by Domb (1970, 6 3). Suppose a star G 
has bridges r, s, t ,  . . . and we write the key configurational function for the generalized 
model in abridged form : 

(4.4) 
Then to follow the method of sub-graph subtraction we would first expand the function 
L formally as 

(4.5) 

exp L(G) = P(r, s, t ,  . . .). 

L(G) = In P = C A,py,..ras%Y. . . 
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and subtract off the corresponding expansions for all the sub-graphs of G. The result 
is equivalent to deleting from the right-hand side of (4.5) all those products which do not 
involve all the variables I ,  s, t ,  . . . . We denote the expansion after deletion of the in- 
complete products by in *P. The modified expansion In *P is the expansion of the 
weight generating function of G and we can write (3.1) as 

(4.6) U G )  = 1 ( g  ; G) In *P(g).  
g 

This equation summarizes the complete-term method. 

Then for any star of cyclomatic number I + 1 : 
To prove the result we suppose it true for stars of cyclomatic number I or less. 

L(G) = 1 ( g ;  G) In *P(g)+ w(G). 
g + G  

(4.7) 

If we set any interaction equal to zero the left-hand side corresponds to a graph with 
cyclomatic number I whose L function must be correctly given by the first term on the 
right-hand side. Thus w(G) vanishes identically for each interaction in turn and thus 
can only contain complete terms. This suffices to establish the result and (4.6) follows 
by induction. 

To give a specific example we find from (2.7) that for any theta graph 

and on deleting the incomplete terms 

In *P = - r2st  + 2 C r3s2t + 2 r2s2t2 + . . . . (4.9) 

To particularize to the theta graph p s a  we replace r by v ,  s and t by v 2  and collect up 
the terms to obtain 

ln*P = - v 6 - 2 u 7 +  . . . .  (4.10) 

The coefficient of u6 in (4.10) now corresponds to the coefficient of pspu6 in (3.4). 

5. General substitution theorem 

If a star has an articulation set of order two the calculation of its key configurational 
function can be simplified by a general substitution which we now prove. Suppose G 
has an articulation set of order two at  the vertices R and S. Then by definition deletion 
of R and S, together with all their incident edges, leaves a graph with at least two con- 
nected components. Denote the vertex set of one of these by V’ and that of all the 
others by V”. Denote by G’ the section graph of G with the vertex set V’+R+S to- 
gether with a new bridge a’, joining R to S, and by G“ that with vertex set I/”+ R+S 
together with a new bridge a”, joining R to S. (We illustrate these graphs schematically 
in figure 1.) 

The embeddings that contribute to the key configurational function P‘ of G’ are of two 
kinds: those that use the bridge a’ and those that do not. We group these separately 
by writing 

P‘ = l + @ ’ + a ’ @  (5.1) 

where c$’ and I)‘ are independent of a’. The function 4’ contains all no-field sub-graphs 
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R R R 

Figure 1. Schematic representation of the graphs whose key configurational functions are 
related by the general substitution theory of Q S. The vertices R and S of the articulation 
set are not restricted to nodes. The shaded portions represent any graph connecting R 
and S. 

of G‘ that do not contain a ’ ;  the function $’ contains all the sub-graphs of G‘ that con- 
tain R and S and have every vertex of even degree except R and S .  We write likewise 
for G“ 

(5.2) 

where the functions 4” and $” will correspond to sets of sub-graphs restricted as before. 
The embeddings which contribute to the key function for G divide into two mutually 
disjoint classes. 

(i) Those that are the sum graph of two no-field embeddings (which may include 
the null-graph), one wholly in G’, the other wholly in G”. 

(ii) Those that are the sum graph of two magnetic embeddings, one wholly in G’, 
the other wholly in G”, each having R and S as their odd (magnetic) vertices. 

Now the first class must correspond identically to the product (1 + 4‘)(1+ 4”) and 
the second to the product $’$”. Thus we may write 

(5.3) 

P‘‘ = 1 + 4“ +a” $” 

P = (1 + 4’)(  1 + 4”)+ I)’$‘‘ 

and the corresponding weight generating function is, by the complete term method, 

In*[(1 +&‘)(I +4”)+$’$”] = In* 1 +4’+ - [ ( 1  :44*j. (5.4) 

The equality follows because without the asterisks the right-hand side only differs from 
the left by ln(1 + 4”) and this cannot contribute any complete terms. But the weight 
generating function of G’ is 

In*( 1 + 4’ + a’ #’) ( 5 . 5 )  

and the joining of the two graphs G’ and G” at R and S ,  with deletion of a’ and a” is 
seen to be equivalent to the substitution 

(5.6) 

This contains the results given by Domb (1972, theorems I and I1 and substitution (23)) 
but is more general. We have proved the substitution (5.6) for a graph; the argument 
will apply to any homeomorph of G and therefore is applicable, mutatis mutandis, to 
graph topologies. 

By successive applications of the result of this section, and the methods of previous 
sections, the L weights of a large number of graphs have been determined (Hunter 
1967); some general properties of L weights are summarized by Sykes et al (1974, @ 2). 

a’ = $“/(l + 4”). 
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